
PinK: High-speed In-storage Key-value Store with Guaranteed Tails
Submission #452

Abstract

Key-value store based on a log-structured merge-tree (LSM-
tree) is preferable to hash-based KV store because an LSM-
tree can support a wider variety of operations and show better
performance, especially for writes. However, LSM-trees are
difficult to implement in the resource constrained environment
of a key-value SSD (KV-SSD) and consequently, KV-SSDs
typically use hash-based schemes. We present PinK, a design
and implementation of an LSM-tree-based KV-SSD, which
compared to a hash-based KV-SSD, reduces 99th percentile
tail latency by 73%, improves average read latency by 42%
and shows 37% higher throughput. The key idea in improving
the performance of an LSM-tree in a resource constrained
environment is to avoid the use of Bloom filters and instead,
use a small amount of DRAM to keep/pin the top levels of
the LSM-tree.

1 Introduction

Offloading the key-value (KV) functionality onto a storage
device has received a lot of attention recently from both
academia and industry [7, 17, 20, 27, 43]. A representative de-
vice in this class is Samsung’s key-value SSD (KV-SSD) [20],
which directly serves KV requests. By offloading most com-
monly used operations of KV databases (e.g., RocksDB [14]),
KV-SSDs not only improve I/O latency and throughput of
KV clients, but also reduce the CPU and DRAM resource
requirements on the host-side.

The idea of KV-SSD is promising but the current propos-
als and devices often provide inconsistent tail-latency and
throughput. This is because most of KV-SSDs are based on
hashing [12,17,20,27,40,43], which is attractive because it is
rather simple to implement but has some inherent limitations.
A hash-based KV-SSD maintains a hash table in the controller
DRAM, each entry of which typically contains a key (or the
signature of a key) and a pointer to the corresponding KV pair
in the flash. The hash table is used to quickly index key-value
pairs by simple table lookups. However, when the DRAM size
is not large enough to accommodate all the hash table entries,
parts of the hash table must be stored in flash. This inevitably
involves expensive flash accesses and complex hash table
management when accessing entries that are not in memory.
Even worse, if a hash collision occurs, multiple flash accesses
are required, resulting in long and unpredictable tail-latency
and drop in throughput.

To understand the behavior of hash-based KV-SSDs, we

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400

Block-SSD
1GB - 3TB

KV-SSD

C
D

F

Time (microsecond)

1GB
64GB

128GB
256GB
512GB

1TB
2TB
3TB

(a) CDF of read latency

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

1
G
B

6
4
G
B

1
2
8
G
B

2
5
6
G
B

5
1
2
G
B

1
T
B

2
T
B

3
T
B

K
IO

P
S

KV-SSD

Block-SSD

(b) Read throughput

Figure 1: Performance comparison of KV-SSD & Block-SSD
depending on the total amount of data stored (1GB∼3TB)

conducted a set of experiments on a 4TB KV-SSD prototype
(KV-PM983 [35]). We created KV pools ranging in size from
1GB to 3TB, and chose the average key and value sizes to be
32B and 1KB, respectively [3]. Thus, a 3TB KV pool would
hold 3 billion KV pairs. We ran random GET() requests on
these KV pools for 10 minutes using KVBench [33]. No GC
occurred during our experiments.

Figure 1 shows that the KV-SSD suffered from inconsistent
read latency, and its throughput dropped as the number of
objects stored increased. The average read latency increased
from 149.49 µs (1GB pool) to 245.31 µs (3TB pool). We
also observed long tail latency: for the 99.99th percentile, the
tail-latency increased from 323 µs to 1020 µs. Even worse,
the read throughput dropped to 64 KIOPS from 112 KIOPS.
Although we did not have access to any of the internal details
of the KV SSD design (e.g., the hash function), it is easy to
conclude that the performance and tail latency get worse in a
hash-based implementation as the total number of stored KV
pairs increases. This hypothesis was given further support
by another experiment, where we used the same setup to
run FIO [4], a 4TB Block-SSD [36], which loads an entire
FTL table in DRAM for 4KB page mapping. FIO exhibited
stable latency and throughput, regardless of the amount of data
stored. Such severe performance variability and unpredictable
I/O behaviors make KV-SSDs less attractive than normal
SSDs.

An alternative to hashing is log-structured merge trees
(LSM-trees) [29]. The tail-latency in such a system is bounded
by the number of levels in the tree. Since an LSM-tree indexes
KV pairs in a multi-level sorted tree, it might also require
a much smaller DRAM for indexing KV pairs. The LSM-
tree also supports range-queries and scans efficiently, without
any extra bookkeeping or support from KV clients [20]. Our
experiments, however, revealed that a conventional implemen-

tation of the LSM-tree on an SSD controller failed to deliver
the promised benefits. In fact, it showed worse performance
than hashing in some cases.

The first problem we discovered was the tail latency. Most
LSM-tree implementations use Bloom filters to skip lookups
in a tree level to improve average read latency. Owing to
the probabilistic nature of Bloom filters, however, one cannot
ensure the worst-case read latency; indeed, we observed long
tails as in the hash-based KV-SSD. The second problem was
high write-amplification. Even if we use key-value separation
like Wisckey [25], compaction, an essential task of the LSM-
tree to sort KV indices and balance its indexing trees, involves
many extra storage accesses. Moreover, this LSM-tree com-
paction cost exacerbates the FTL’s garbage collection (GC)
cost. The third problem was that rebuilding Bloom filters
and sorting KV pairs for compaction requires lots of CPU
cycles, which overburden embedded-class microprocessors
found in SSD controllers. This lack of processor performance
deteriorates the I/O performance dramatically.

In this paper, we propose an LSM-tree-based in-storage
key-value engine, called PinK, which overcomes all the prob-
lems mentioned above. The novelty of PinK design stems
from four specific techniques it uses. At the heart of PinK is
level pinning. Instead of keeping probabilistic Bloom filters in
DRAM, PinK pins exact key-value indices of the top levels of
the tree to DRAM. This removes unnecessary flash lookups
on the pinned levels in a deterministic manner, thereby en-
abling us to provide predictable read latency with guaranteed
tails. Elimination of Bloom filters also reduces the resource
requirement for computing them. Second, the level pinning
helps us reduce flash I/Os caused by compaction. Since KV
indices are kept in DRAM, PinK can sort them in DRAM
without any I/Os. The pinned indices are protected by built-in
capacitors, so flushing out up-to-date indices to flash is not
necessary. (This idea is feasible only for small amount of
DRAM). Third, we discovered that the majority of GC I/Os
are induced by updating indices of the LSM-tree. By delay-
ing index updates until the compaction phase, PinK reduces
GC I/Os greatly. Finally, by adding hardware comparators
in between the SSD controller and NAND chips, and per-
forming KV sorting while reading KV pairs, PinK completely
eliminates CPU costs for compaction.

We have implemented PinK on MIT’s FPGA-based SSD
platform [18], and used the LSM-tree implementation of
LightStore [7] as our starting point, because its source code
is publicly available. Using YCSB [9] benchmarks, we have
shown that PinK outperforms existing KV-SSD designs in
several aspects. Compared to a hash-based KV-SSD, PinK
reduces 99th percentile tail latency by 73%, improves aver-
age read latency by 42% and shows 37% higher throughput.
Furthermore, compared to LightStore, PinK reduces 99th per-
centile tail latency by 22%, improves average read latency by
22% and shows 44% higher throughput.

Paper Organization: In Section 2, we explain background

closely related to this study. Section 3 analyzes the perfor-
mance of the LSM-tree algorithm in KV-SSD. Section 4
presents an overall design of PinK, along with optimization
techniques. In Section 5, we present experimental results. We
conclude in Section 6.

2 Background

2.1 NAND Flash-based SSD
A conventional Block-SSD is designed to support the stan-
dard block I/O interface. It exposes a linear array of 4KB
logical blocks which are accessed by block I/O primitives
(e.g., READ and WRITE). A flash translation layer (FTL) in
the SSD firmware is responsible for providing the block I/O
interface [1]. To hide the out-of-place update nature, the FTL
writes incoming data to free flash pages in an append-only
manner. To redirect 4 KB logical blocks to free pages, the FTL
maintains a mapping table indexed by logical block address
(LBA), and each entry points to the corresponding flash page.
The mapping table is kept in the controller DRAM and its
size is approximately 0.1% of the SSD capacity [34, 38]. For
example, for a 4TB SSD, 4GB DRAM is required. A mapping
table has to be persistent (non-volatile) and is protected by
batteries to guard against sudden power failures [5]. Similar
to other log-structured systems [31], the FTL has to perform
garbage collection (GC) to reclaim free space.

2.2 KV-SSD
A KV-SSD is a new type of SSDs [20, 39] which provides
the key-value interface. KV-SSDs look like a container of
key-value objects, where each object is labeled by a unique
key and contains an associated value (i.e., data). In contrast
to a block-addressed SSD, both the key and the associated
value are of variable sizes. A key can be as long as 255
bytes [39] or even be a character string, and a value can be
as big as 2MB [39]. In addition to GET() and SET(), the
basic operations to access KV objects, KV-SSDs support
a rich set of operations like iterations, range queries, and
transactions [20, 21]. A more detailed description can be
found in SNIA’s KV-SSD specification [39].

Making SSDs support the KV interface requires a redesign
of the FTL because the existing table-based translation is
not suitable for managing KV objects. A variety of KV-
SSD designs have been proposed both in academia (e.g.,
NVMKV [27], KAML [17], and BlueCache [43]) and indus-
try (e.g., Samsung’s KV-SSD prototype [20, 35]). All these
KV-SSDs are based on the hash-based data structure, which
we discuss next.

2.3 Hash-based KV-SSD
A hash-based KV-SSD maintains a hash table with many
buckets in DRAM, where each bucket holds metadata (i.e., a

2

key and a pointer) for a specific KV object in flash [12,17,27,
43]. A primary design issue of the hash-based KV-SSD is the
management of a huge hash table requiring large amounts of
DRAM. Suppose that the SSD capacity is 4 TB and the key
and value sizes are on average 32B and 1KB, respectively [3].
If the number of buckets is 232 (= 242/210) and the bucket
size is 36B (32B for a key and 4B for a pointer), 144GB of
DRAM is required to hold the complete hash table.

To reduce DRAM, some use signatures [6, 12, 22, 40, 43].
Instead of an exact key, a short signature of the key is kept in
the bucket. The exact key and its value are stored in the flash.
Using signatures reduces the hash table size greatly – if a 16-
bit signature is used, 24GB of DRAM is required. However,
it causes signature collision which happens when different
keys have the same signature. 24GB DRAM is still huge for
an SSD. The DRAM size can be further reduced by keeping
only popular buckets in a fixed-size DRAM (e.g., 4GB) while
storing the rest in the flash [15]. This, however, causes extra
flash reads. If a designated bucket is not available in DRAM
(i.e., hash table miss occurs), we have to fetch the bucket
from the flash to find the location of a desired KV object.
Consequently, owing to signature collision and hash table
miss, the hash-based KV-SSD exhibits unstable performance
as depicted in Figure 1.

This inconsistent performance may be due to inefficient col-
lision resolution policies. There are advanced hashing strate-
gies, such as Cuckoo [30] and Hopscotch [16, 22], which
provide constant worst-case lookups and may avoid the tail
latency. But, this benefit comes at the cost of degraded write
speed and/or frequent rehashing. Hashing algorithms also
cannot efficiently support range and scan operations [20].

2.4 LSM-Tree versus Hashing

An LSM-tree is another data structure that is used widely
to implement persistent key-value stores. It is usually imple-
mented purely in host software and can support a wider set
of KV operations (e.g., RocksDB [14] and Cassandra [23]).
It is also used in big all-flash array (AFA) systems such
as Purity [8]. Because of its increasing popularity across a
variety of systems, many LSM-tree variants have been pro-
posed [2, 19, 41].

LSM-trees generally have better write performance than
hash-based KV-Stores but are more difficult to implement and
require more processing and DRAM resources. This is not
surprising because LSM-tree algorithms have been designed
mostly for server-class x86 host machines, which have plenty
of computing resources. Nevertheless, recently LSM-trees
have also been used in some implementations of KV-SSDs
like LightStore [7], iLSM-SSD [24] and Kinetic HDD [13].
The design of PinK was motivated by some inefficiencies
identified in LightStore, which we discuss in Section 3. We
expect iLSM-SSD to exhibit similar behavior as LightStore
because it also relies on Bloom filters to speed up reads.

4 15 33 51

DRAM

Flash

2 7 52 60

1 3 7 10 33 39 51 60

L
1

L
2

L
0

Low

High

DRAM

Flash

1 2 3 4 7 10 15 33 39 51 52 60

L
1

L
2

L
0

Low

High

(a) Before L
0

is flushed

Flush

(b) After flush & compaction

GET(39)

Figure 2: LSM-tree organization (h = 3, T = 2). A rectangle
represents a KV object and the number inside is the key.

3 Challenges in implementing LSM-tree in a
KV-SSD

In this section, we analyze the performance and present key
technical challenges an LSM-tree is implemented in a re-
source constrained environment of an SSD controller.

3.1 Basic of LSM-Tree Algorithm

The LSM-tree maintains multiple levels of sorted KV indices,
L0, L1, ..., and Lh−1, where h is the height of an LSM-tree. The
level 0, L0, is kept in DRAM as a write buffer, whereas the
rest are stored in persistent media (e.g., flash). In LSM-trees,
the levels are organized so that a lower level is T times larger
(i.e., the size factor T) than a higher one. Each level is divided
into fixed-size runs, where the size of each run is usually the
same as that of L0.

The LSM-tree has two unique properties: #1. for each level,
KV objects are unique and kept sorted by their keys; and #2.
the key range of one level may overlap the key range of other
levels due to overwrites (see Figure 2).

When a SET() request comes, a KV object is first buffered
in L0. Once L0 becomes full, buffered KV objects are flushed
out to L1. All the objects in L0 are written to L1 in an append-
only manner. Similarly, once Li becomes full, its KV objects
are evicted to Li+1. Since the key ranges of adjacent levels
may overlap, flushing out KV objects from a higher level to a
lower level has to be done in a manner not to violate Property
#1. Therefore, the LSM-tree algorithm performs a process
called compaction while flushing KV objects to a lower level.
Compaction reads objects from two adjacent levels, sorts them
in the memory, and writes the sorted objects to next lower
level as shown in Figure 2(b). Compaction incurs a huge I/O
overhead. This overhead can be mitigated by separating keys
from values and by avoiding moving values which are not
affected by compaction (see Wisckey [25]).

The LSM-tree maintains an in-memory data structure that
points to runs of levels in the flash. Each run contains a header

3

 0

 0.2

 0.4

 0.6

 0.8

 1

0 2.5 5

C
D

F

Time (ms)

Block w/o BF w/ BF

0.98

1

1.5 2 2.5 3 3.5

(a) Read latency (YCSB-C)

of flash w/o BF w/ BFpage reads
1 0.0932% 0.190%
2 0.016% 98.347%
3 0.040% 1.359%
4 1.398% 0.082%
5 98.458% 0.001%

(b) Flash page read counts (YCSB-C)

 0

 30

 60

 90

 120

 150

YCSB-C YCSB-Load

K
IO

P
S

Block

w/o BF

w/ BF

(c) I/O throughput

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

YCSB-Load (w/ BF)

E
la

p
s
e

d
 t

im
e

 (
s
)

Compaction I/O
Compaction CPU

BF build

13.4%
13.7%

72.9%

(d) Compaction time breakdown

Figure 3: Experimental results of the conventional implementation of LSM-tree on an SSD controller

that holds the locations of KV objects (KV indices) in the
flash. Searching for a key at a specific level is fast. Once a
header is read from the flash, the location of a desired KV
object can be quickly found since they are sorted by key.
However, finding the desired key in the entire tree requires
looking in multiple levels because key ranges at different
levels may overlap (Property #2). In the worst case, all levels
have to be searched as shown by GET(39) in Figure 2(a). The
number of the worst-case flash lookups is O(h− 1) (Note:
L0 is excluded since it stays in DRAM). Bloom filters are
often used to avoid useless lookups on levels that do not have
desired keys [10,11]. Usually, each level or run in the tree has
each own filter.

3.2 Performance Analysis

Our PinK implementation uses the same FPGA-based hard-
ware platform as LightStore [7], which has quad-core ARM
Cortex A53 running at 1.2GHz and 4GB DRAM. This con-
troller specification is similar to those of latest SSDs with
in-storage computation capability [28, 32]. PinK is equipped
with a 256GB NAND flash card which provides 1.1 GB/s
read and 600 MB/s write throughputs, respectively, and offers
122,349 IOPS for 4KB reads and 66,843 IOPS for 4KB writes,
respectively.

To understand the weaknesses of conventional LSM-tree
implementations, we first improved the Bloom filter imple-
mentation in LightStore [7] by replacing the original one with
Monkey [10]. We leveraged AArch64 SIMD instructions in
implementing Monkey. Key-value separation [25] was em-
ployed by default.

For fast evaluation, we reduce the SSD capacity to 64GB.
The number of levels in the tree is set to 5 (h = 5) with a
size factor of 23. We assume that 64 MB of DRAM (0.1%
of 64GB) is available and it is used to keep Bloom filters for
levels. We either enable or disable Bloom filters (Monkey) to
understand its impact on performance. To characterize basic
performance, we run two extreme workloads, YCSB-Load
(100% writes) and YCSB-C (100% reads). Average key and
value sizes are 32B and 1KB. We first run YCSB-Load with
44 million (44GB) uniformly random KV-pairs, and then run
YCSB-C with 10 million Zipfian requests. Results with other
workloads can be found in §5.

To understand the impact of the LSM-tree algorithm, we
compare the performance of the LSM-tree KV-SSD with that
of a Block-SSD implemented on the same platform. The
Block-SSD employs a page-level FTL whose flat mapping
table, indexed by LBA, can be loaded entirely on DRAM. A
physical page mapped to a logical block can be found with
only one memory reference.

Figure 3(a) shows the CDF of the read latency of YCSB-C.
Without Bloom filters, the LSM-tree KV-SSD shows long
read latency over the Block-SSD. Figure 3(b) summarizes
the number of flash page reads to service a GET() request. If
GET() is directly served by L0 (i.e., a write buffer), a page read
is not necessary. Otherwise, the LSM-tree looks up lower lev-
els to fetch KV indices from the flash. The majority (98.4%)
of GET() requests touch up to the last level (L4), issuing four
page reads. This is because almost all of the KV pairs (95%)
are stored on L4. When Bloom filters are enabled, it offers
better read latency, but is affected from long tails. With Bloom
filter, on average, one flash lookup is required for retrieving a
KV object as in Figure 3(b). Owing to its probabilistic nature,
however, 1.4% of the total GET()s still require more than one
flash lookup, which are large enough to cause long tails (see
the zoom-in figure in Figure 3(a)).

Figure 3(c) illustrates the I/O throughput. The read through-
put of the LSM-tree with Bloom filter in YCSB-C is about
half of the throughput that the Block-SSD provides. This is ex-
pected because Monkey requires two flash reads, on average,
for retrieving KV indices to serve GET().

As we can see in Figure 3(c), in YCSB-Load, we observe
serious drops in the write throughput, compared to the Block-
SSD. Even with Wisckey, compaction I/Os account for 75.5%
of the total I/Os (both reads and writes). While not included in
Figure 3(c), I/Os for GC also badly affect the write throughput.
According to our analysis (see §5.2), the write amplification
factor (WAF), which is 2.52 when only compaction I/Os oc-
cur, increases to 5.02 once GC starts to trigger. We find that
moving valid pages for GC involves cascade updates of KV
indices maintained by the LSM-tree.

The high CPU overheads of the LSM-tree also slow down
the write throughput. Due to slow speed of ARM CPUs, sort-
ing KV pairs for compaction, which involves string compar-
isons, becomes a bottleneck. As shown in Figure 3(d), it takes
almost the same time as performing compaction I/Os. The

4

cost of rebuilding Bloom filters is high. Bloom filters should
be rebuilt for newly-created levels after compaction, which
requires expensive hash computations and lots of memory
accesses. Even though a hash computation is accelerated by
SIMD instructions, its negative impact is still huge. Be ad-
vised that, our LSM-tree is carefully designed so that I/Os
and computation are maximally overlapped. However, this
cannot completely hide high computation costs.

The problems we have observed can be summarized as
follows: #1. LSM-trees exhibit higher average-latency be-
cause of multi-level search, and also exhibit unpredictable
tail-latency because of Bloom filters; #2. Bloom filters re-
quire lots of computational power to reconstruct. They have
to be reconstructed after each compaction; #3. Level com-
paction (excluding Bloom filter reconstruction) also requires
a lot of computation and I/O bandwidth; #4. Compaction I/Os
may trigger GC which in turn generates more I/Os, resulting
in high write amplification.

4 Design of PinK

Bloom filters are used to reduce the average read latency.
Another way of reducing the read latency would be to keep
popular KV indices in DRAM. The LSM-tree by nature keeps
the recently written indices in the top levels. In PinK, we
eliminate the Bloom filters and mitigate the increased read
latency by pinning top-K levels (§4.2 and §4.3). We will show
that level-pinning requires only a small amount of DRAM.
Tail latency is already bounded to the height of the tree. An-
other benefit of level-pinning is that it eliminates the flash
I/Os required for compaction of two levels which are already
pinned in DRAM. The throughput can be further improved
by using hardware accelerators that performs compaction for
pinned and flash-resident levels (§4.4). Finally, to alleviate
the GC costs associated with compaction, we delay GC by
putting updated KV indices in L0 (§4.5). This reduces the
write amplification which affects lifetime of SSDs.

4.1 Overall Architecture
PinK supports variable-sized keys (16B∼128B) and val-
ues (1KB∼2MB), along with a rich set of KV operations
(i.e., GET(), SET(), DELETE(), SCAN(), and ITERATOR()),
except for a few features like namespaces. Like KV-SSDs,
PinK is able to guarantee durability and atomicity of KV
operations [5, 20, 37]. While the lack of space does not per-
mit us to describe the details of all the operations, we focus
on explaining key data structures and operations which are
different from conventional LSM-tree-based KVSs.

Data Structures. Figure 4 illustrates four types of data
structures of PinK: a skiplist and level lists, which all reside
in DRAM, and meta segments and data segments, which all
reside in flash. Overall, the design of PinK is not much differ-
ent from LSM-tree-based KVS combined with Wisckey [25],
but it is optimized to maintain compact data structures in the

Level lists

L1

L2

2 0 - -

1 1 33 2 - - - -

Skiplist

4 15 33 51L0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DRAM

Flash

Meta Segment Data Segment

33 39 51 60

Page
Block

33 39 51 60

Page #

Header

ValueKey

Pointer

Pointer

Start Key GET(39)
①

②

③

④

⑤

⑥

Figure 4: An overall architecture of PinK with its key data
structures in DRAM and flash. The tree hierarchy and KV
objects are identical to those of Figure 2(a). Given GET(39),
1© PinK first looks up the skiplist (L0). Since a matched
one is not found, 2© it goes down to L1, 3© reading a meta
segment from the page 0. It does not have a desired key, so 4©
PinK visits L2 and reads 5© the page 2 to get a meta segment.
Finally, 6© it can find the location of the value for the key
‘39’. Three flash reads are required to serve GET(39).

controller DRAM for better performance in storage devices.
Also, the headers of each data structure are designed to be
handled easily by HW accelerators. PinK directly deals with
NAND chips to perform indexing, GC, and wear-leveling
obviating any need for a costly FTL found in most SSDs.

A skiplist corresponds to L0 in the LSM-tree algorithm and
works like a write buffer which buffers incoming KV objects
temporarily. The size of L0 is configured to be large enough
(e.g., 8MB∼64MB) to fully utilize the parallelism of multiple
NAND channels when KV objects are flushed out to the flash.
Each skiplist entry has four fields: <key size, key, value size,
value>, and all the entries are sorted by key.

Once the skiplist becomes full, buffered objects are materi-
alized to L1 as the forms of meta segments and data segments.
In L1 (and all the lower levels), keys and values are separated
into meta and data segments, respectively. A meta segment
contains keys and pointers to its associated values in data
segments. In addition to values, a data segment stores keys
and their sizes to support GC (see §4.5). The size of a meta
segment is fixed to a flash page size (e.g., 8KB ∼ 16KB),
but a data segment can be of any size – it is like a huge log
containing KV objects pointed to by meta segments.

Since meta segments are referenced by the software to look
for a KV object and by the hardware accelerators for com-
paction, they are organized to be manipulated by both of them.
A meta segment is composed of an array of <key, pointer>
pairs sorted by key, plus a header. A pointer is a 4B integer, but
a key size varies from 16B to 128B. To quickly find a variable-
size key using binary search, a meta segment header maintains
the start locations (2B each) of <key, pointer> pairs. If a meta
segment is 16KB, it contains up to 1024 <key, pointer> pairs

5

where at most 2KB is used as a header. For HW accelerators, a
header and <key, pointer> pairs are aligned to 16B for simple
implementation. We discuss this in §4.4 in detail.

PinK maintains another in-memory data structure, level
lists, which keep track of meta segments at every level in the
flash. If the tree has five levels (i.e., h = 5), there are four level
lists except for L0. Each level list is organized as an array of
pairs of fixed-sized pointers (4B each, 8B total); the first one
points to the physical location of a meta segment in the flash;
the second one points to a start key of that meta segment.
Note that start keys of meta segments are stored separately
in DRAM to support variable-sized keys (16-128B). This
facilitates us to implement binary search to find a desired
meta segment in a level list.

Two in-memory data structures, L0 and the level lists, are
protected by capacitors. This provides enough time for PinK
to safely flush out them to the flash in the event of power
failures or when a system is turned off. PinK also does not
need to use a write-ahead log (WAL) to provide atomicity and
durability of data.

Data Structure Size. Compared to the hash, PinK requires
much smaller DRAM for indexing KV objects. Assume that
an SSD capacity is 4TB and each meta segment is 16KB.
As in §3, the average sizes of keys and values are 32B and
1KB, respectively [3]. Each entry in a meta segment is 36B
(32B key and 4B pointers). A 16KB meta segment can hold
398 <key, pointer> pairs. In a 4TB SSD, there exist 232 1KB
objects, and thus the number of meta segments in the flash
is about 10.8M (= 232/398). Each of these must be pointed
to by some level lists. Each level list entry is 8 B, and each
entry has a corresponding start key whose average size is 32B.
Thus, only 432MB (= 10.8M×(8B + 32B)) DRAM is needed
to hold all the level lists.

4.2 Improving I/O Speed with Level Pinning

Eliminating Read Tails. Retrieving a KV object from PinK
requires multiple flash lookups. In the worst case, O(h−1)
flash lookups are required to access a KV object. Bloom filters
is typically used to avoid useless lookups on levels that do not
have desired keys [10, 11]. As pointed out earlier, however, it
cannot avoid long tails and causes high CPU costs.

In order to guarantee worst-case latency and to get rid of
Bloom filters, PinK adopts level pinning. The idea of the level
pinning is straightforward. If the LSM-tree has h levels, PinK
keeps meta segments for top-k levels (k ≤ h−1) in DRAM.
This simple technique greatly reduces read tails. To process
GET(), it first searches for a key in top-k levels in DRAM.
Only when a key is not found in memory, it looks up the rest of
levels resident in the flash. With the level pinning, the number
of the worst-case flash lookups is reduced to O(h− k−1).

Level-pinning Memory Requirement. One might think
that the level pinning would require large amounts of DRAM,
but this is not the case. In the LSM-tree, a upper level (Li) is

Level lists

L1

L2

- - - -

1 5 7 6 39 7 - -

Skiplist

L0

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

DRAM

Flash

Data Segment

7 10 15 33 4 15 33 51

Point to

different data segments

Invalid page

Meta Segment

Figure 5: The DRAM and flash layouts of PinK after L0 (in
Figure 4) is flushed out with compaction. The tree hierarchy
and KV objects are identical to those of Figure 2(b).

T times smaller than a lower level (Li+1), which implies that
the level size increases exponentially by a factor of T . In the
4TB SSD organized with 5 levels, the amount of DRAM re-
quired to pin meta segments for L1, L2, L3, and L4 are 0.91MB,
50.86MB, 2.83GB, and 161.63GB, respectively. Meta seg-
ments for L1, L2, and even L3 can be loaded in DRAM, consid-
ering a large controller DRAM of an SSD (e.g., 4GB DRAM
for 4TB SSD). The data structures of PinK do not require
large amounts of DRAM (e.g., 432MB), which enables us to
pin more levels.

Reducing Compaction I/Os. Another benefit of the level
pinning is that it eliminates flash I/Os involved in compaction.
The level pinning maintains the meta segments of specific
levels in DRAM. Thus, PinK does not need to issue any I/Os
since pinned meta segments can be updated in DRAM directly.
Dirty segments do not need to be written back to the flash
because they are protected by capacitors.

To understand its benefit, let’s consider how PinK performs
compaction using the examples in Figures 4, and 5. Figure 5
is the data layout after the compaction. We assume that L1
is pinned to DRAM. Before flushing out L0, PinK fetches
the corresponding meta segments from L1 (i.e., the page 0 in
Figures 4 and 5) and sorts KV indices of L0 and L1, which
creates two sorted meta segments. The sorted meta segments
are then flushed out to L1 (i.e., the pages 3 and 4 in Figure 5).
The level lists are updated accordingly. PinK recognizes that
L1 becomes full, and thus flushes out L1 to L2. To do this, PinK
reads two meta segments from each of L1 and L2 (the pages
1∼4 in Figure 5), sorts them, and finally writes three sorted
segments to L2 (i.e., the pages 5∼7). Since L1 is pinned, PinK
eliminates 3 reads and 2 writes out of 5 reads and 5 writes
which occurs while conducting the compaction.

4.3 Optimizing Search Path

The level pinning gives us performance benefits by removing
Bloom filters, but it creates a challenge that increases the
search time of a key in the level lists. The original LSM-tree

6

L1

L2

Lh-1

log(N ⸱ Th-2)

log(N ⸱ T)

log(N)

log(T)

log(T)

Search range

Range pointer

𝒆𝑳𝟏
𝒊

(a) level list search (b) Optimized level list search

log(N)

… …

Figure 6: Search path optimization with range pointers

maintains Bloom filters for each level or run. Given a key, it
first looks up the Bloom filters for Li. Only when the Bloom
filters return true, it searches for the key in its in-memory
data structure (e.g., a level list in PinK) to find the location
of a header containing KV indices in the flash (e.g., a meta
segment). Otherwise, it skips Li, visits the next level, Li+1,
and looks up Li+1’s filters. As a result, Bloom filters remove
useless flash reads and reduces search time in the LSM-tree’s
in-memory data structures.

Since PinK does not use Bloom filters, it has to perform
binary search on level lists until it finds a matching meta
segment. This does not cause a serious overhead for higher
levels (e.g., L1 and L2) whose level lists have few entries.
On the other hand, since level lists belonging to lower levels
(e.g., Lh−1) have many entries, the search overhead becomes
huge. Figure 6 (a) shows how PinK performs binary search on
the level lists. Suppose L1 has N entries. Because a level size
increases by a factor of T , L2 has N ·T entries, L3 has N ·T 2

entries, and finally Lh−1 has N ·T h−2 entries. The worst-case
time complexity is thus expressed as O(h2 · log(T)).

To reduce the search overhead, PinK uses two techniques.
The first one is to reduce string comparison costs by using a
prefix of a key. Recall that each entry of a level list has two
pointers, each of which points to a meta segment and a start
key string, respectively. We further include a prefix which
holds exactly the first four bytes of a start key. During binary
search, PinK compares the first four bytes of an input key
with a prefix. Only when they match, it performs a full string
comparison using the pointer to the key.

The second one is to reduce search ranges of the level
lists. Each entry of a level list now has another 4-byte pointer,
called a range pointer. It locates the next lower level’s entry
which has the greatest start key but whose key is less than or
equal to that of the upper level entry. Given a key to search,
PinK does binary search for L1 and finds an entry, say ei

L1
,

in L1’s level list. If a meta segment pointed to by ei
L1

does
not have a matched KV index, PinK has to go down to the
next level, L2. The range pointer of ei

L1
becomes the lower

search bound for L2. Then, the range pointer of the next entry
ei+1

L1
in the same level (i.e., L1) is the upper search bound.

As shown in Figure 6 (b), using two pointers, the number of
entries we have to do binary search in L2 is reduced to T , on
average, since a level size increases by a factor of T . This

Entry Selector

Flash Controller

Key Comparator
(==, >, <)

Li

Meta segment
Reorder Buffer

Li+1

Flash Request
Generator

flash read flash write

Li stream Li+1 stream

Newly Merged Li+1

Invalidated EntriesSoftware
Host System Bus

Write Buffer

flash
requests/acks

HW Accelerator
Compaction

Manager

Compaction
Request

Compaction
Done

W
rit

e-
ba

ck

interleaved packets

Meta segment
Reorder Buffer

Figure 7: Compaction accelerator for flash-resident levels

can be applied for lower levels, L3, ... , Lh−1. Thus, the time
complexity reduces to O(h · log(T)).

With prefixes and range pointers, each entry size in the
level lists increases to 16 bytes from 8 bytes. Fortunately,
the lowest level Lh−1, which has the largest entries, does not
maintain range pointers. As a result, additional DRAM is
about 43.9MB in the same setting as in §4.1.

4.4 Speeding up Compaction
While the level pinning effectively reduces the number of
I/Os for compaction, it does not remove the computation cost
for sorting KV pairs. We address this problem by offloading
some compaction tasks to a special HW accelerator in the
SSD controller. The idea behind this is that compaction is
just like merging two sorted lists of KV indices into a single
sorted list. The HW accelerator placed between the flash and
the host data bus can easily merge two flash-resident levels
as meta segments of two levels are streamed from flash at
wire speed. The accelerator writes the merged meta segments
back to the flash without CPU involvement. By using the HW
accelerator, we not only alleviate the computation overhead
but improve I/O bus utilization since no to-be-merged and
merged segments transferred over system bus. Remaining I/O
bandwidth can be utilized by DRAM and flash for other tasks
such as searching upper levels or managing pinned levels.

Figure 7 describes the architecture of the HW accelera-
tor. We briefly present how the compaction accelerator for
flash-resident levels works. The PinK software requests the
accelerator to perform compaction by providing lists of the
meta segments’ flash addresses of two levels (Li and Li+1) to
be merged and a list of flash addresses to which the merged
meta segments (Li+1) are written back. The flash request gen-
erator schedules multiple read requests to maximize the flash
bandwidth utilization. Since the packets of different flash
channels are interleaved, we need to use per-channel reorder
buffers for each level to serialize the stream of meta segments.

Once we have sorted meta segment streams from two lev-
els, the compaction engine (gray box in Fig. 7) only needs
to keep comparing the keys of two levels and emitting the
smaller one. The accelerator generates the output stream at

7

wire speed without any computation overhead. When two
keys match, the entry from the upper level (Li) supersedes
as it is more recent one. Note that the accelerator informs
the software the metadata of invalidated entries from Li+1 for
various purposes such as garbage collection. The generated
merged meta segment stream (Li+1) is written back to the
flash via small write buffers. Once the operation completes,
the accelerator responds with the number of flash pages con-
sumed by the newly generated Li+1 meta segments so that
the software can reclaim unused flash addresses previously
provided to the accelerator.

While not shown in detail, we have a similar accelerator
for merging pinned levels that reads from and writes back to
host DRAM. DMA engines are used instead of a flash request
generator and we do not need reorder buffers.

4.5 Optimizing Garbage Collection

The LSM-tree appends all the data to the flash. As compaction
is repeated, obsolete data, which are no longer referenced to
by the tree, are accumulated in the flash and must be erased
by GC later. There are roughly two types of obsolete data
that are created by compaction. The first type is old meta
segments. While performing compaction, PinK writes new
meta segments that replace old ones. For example, the meta
segments stored in the pages 0, 1, and 2 in Figure 5 are not
managed by the tree anymore since they contain old indices.
The second type is an outdated KV object which was updated
with a new one or removed by a client. Outdated KV indices
are discarded from the LSM-tree during compaction (see
§4.4) so that no meta segments point to them. But, their KV
data are still stored somewhere in a data segment(s).

To erase obsolete data and to keep maintaining free space,
PinK triggers GC when free space is nearly exhausted. It
selects a victim flash block, copies valid data (i.e., pages or
KV pairs) to a free block, and erases the victim. For hot-cold
separation, meta segments are isolated in different blocks
from data segments. PinK should perform GC differently
depending on the type of blocks selected as a victim.

GC for Meta Segment: If a victim block to GC is a meta-
segment block and thus has only meta segments, PinK re-
trieves a start key of a meta segment by reading its page.
Then, it looks up the level lists to see if there is any entry
pointing to it. If not, PinK skips it since that segment is obso-
lete (e.g., the page 4 in Figure 5). Otherwise (e.g., the page 5),
it moves the page (i.e., meta segment) to a free page, and then
updates the entry so that it locates a new flash page. Cleaning
meta segments is cheap because it involves valid page copies
and updates of the level lists in DRAM.

GC for Data Segment: Cleaning a data-segment block
requires more efforts. Each data segment keeps metadata
(i.e., keys and sizes) as noted in §4.1. By scanning a data
segment from the victim block, PinK extracts keys for values
to move for GC. Using these numbers, PinK looks up the

level lists and finds associated meta segments to check the
validity (valid or not) of each value. If a meta segment is not
pinned in DRAM, it must be read from the flash. In this way,
PinK collects a list of valid values in the victim.

The simplest approach to reclaim free space, which is used
by Wisckey, is to copy valid values to free pages and to erase
the victim block. The meta segments associated with the val-
ues should be updated and flushed out to the flash so that
they point to the new locations of the values. For meta seg-
ments pinned in DRAM, no flash writes are necessary. This
approach, however, creates many updates on meta segments
in the flash. We observe that many victim values are asso-
ciated with flash-resident meta segments because they were
written long time ago and their meta segments were likely to
be demoted to lower levels. Moreover, only few values belong
to the same meta segment (e.g., 1∼2 values, on average, in
random write workloads). Thus, to move only 1∼2 values,
one meta-segment update is required.

To avoid this, PinK takes an approach that delays updates
of meta segments in the flash. PinK writes valid KV pairs to
L0 again and then just erases the victim block. Corresponding
meta segments now point to wrong flash pages erased by
GC, but this is not a problem at all. Read requests to the
rewritten KV pairs are served by higher levels, and old entries
in the meta segments will eventually be discarded during
compaction later. This approach slightly increases compaction
costs, but greatly reduces GC costs by reducing meta segment
updates. This is because victim KV pairs rewritten to L0 are
coalesced with neighboring KV pairs and then are written to
the same meta segment together.

Note that since KV pairs sitting in lower levels are moved
to L0 during GC, it possibly hurts read latency. However, it
does not affect the worst-case read latency, which is one of
our design goals, because it is guaranteed by the number of
pinned levels.

5 Experiments

We present experimental results on PinK. Particularly, we
seek to answer the following questions: (i) Does the level
pinning improves both read latency and write throughput
along with shorter tails? (ii) Is the HW sorter effective to
reduce the compaction cost? (iii) What is the impact of GC
on performance?

5.1 Experimental Setup
We have implemented PinK on our FPGA-based SSD plat-
form with quad-core ARM Cortex-A53 (Xilinx ZCU102 [42]).
The FPGA is used to implement HW accelerators and flash
chip controller. The SSD platform has a 256GB custom flash
array card. The size of a page is 8 KB, and the number of
pages per block is 256. (See §3.2 for more detailed perfor-
mance numbers.) It is connected to a host through 10 GbE
(1.25 GB/s) whose bandwidth is high enough to saturate the

8

Table 1: A summary of YCSB workloads

Load A B C D E F

R:W ratio 0:100 50:50 95:5 100:0 95:5 95:5
50:50*

(*RMW)
Query type Point Range Point

Request distribution Uniform Zipfian Latest [9] Zipfian

maximum throughput of the flash array card. The I/O queue
depth is set to 64, which is sufficient to fully utilize the par-
allelism of 8-channel and 8-way in our flash array card. We
scale down the SSD capacity to 64GB, and DRAM for KV
indexing structures (e.g., the level lists and pinned meta seg-
ments) is set to 64MB – 0.1% of the SSD capacity.

We evaluate PinK using seven workloads from YCSB, a
realistic cloud benchmark [9]. The details of the workloads
are described in Table 1. Default key and value sizes are set
to 32B and 1KB, respectively, which represent averages of
common KV workloads [3]. For evaluation, we first created
a 44GB KV pool on the 64GB SSD (‘Load’ in Table 1) –
total 44M unique KV pairs are written. Then, we ran each
workload (‘A’∼‘F’ in Table 1) which sends 10M KV requests
to the loaded data set. We initialized the SSD with the Load
phase before any other workload executed. On the host, 64
YCSB clients ran simultaneously to maximize throughput.
With 44GB data, the storage utilization was 69%. We assigned
10% of the SSD capacity (i.e., 6.4GB), for over-provisioning.

To compare with PinK, we have implemented a hash-based
KV-SSD based on what we described in §2.3. The KV-SSD
denoted by Hash uses a 8-bit signature for each KV pair to
balance a hash-table size and a signature collision rate. Note
that, in our experimental setup with a relatively small data set,
the 8-bit signature is large enough to provide a low collision
rate. It requires 320MB of the hash table, which is much larger
than the 64MB of DRAM for indexing. Therefore, Hash keeps
only popular buckets in DRAM using the LRU replacement
policy. Hash uses additional 1MB DRAM for a write buffer.

We compare Hash with two PinK configurations: one with
no HW accelerator (PinK) and the other with HW accelera-
tors (PinK+HW). The conventional LSM-tree implementation
based on LightStore [7] (LSM-tree) is included for our eval-
uation. LSM-tree is equivalent to PinK, except that it does
not employ the optimization techniques explained from §4.2
to §4.5. For PinK, PinK+HW, and LSM-tree, the number of
total levels is set to 5. PinK and PinK+HW pin top-3 levels,
k = 3. The meta segment size is the same as an 8KB page
size. With 8KB meta segments, the amounts of DRAM for the
level lists is 10MB (including both prefix and range pointers).
The rest of DRAM, 54MB, thus can be used to pin levels.
LSM-tree uses 9MB for level lists and 55MB of DRAM for
bloom filters. As in Hash, for L0 (a write buffer), 1MB DRAM
is additionally assigned to PinK, PinK+HW, and LSM-tree.

 0

 10

 20

 30

 40

 50

 60

Load A B C D E F

T
h

ro
u

g
h

p
u

t
(K

IO
P

S
)

Hash
LSM-tree

PinK
PinK+HW

Figure 8: Overall throughputs of the four KV-SSD setups

5.2 Performance Analysis
YCSB Throughput: We measured IOPS of the four KV-SSD
setups (Hash, LSM-tree, PinK, and PinK+HW) using YCSB.
Figure 8 shows the results. PinK+HW outperformed Hash and
LSM-tree, providing 37% and 44% higher throughputs, on
average, respectively. LSM-tree suffered seriously from high
CPU overheads caused by rebuilding bloom filers as well as
sorting KV pairs. By eliminating bloom filters and reducing
compaction I/Os, PinK improved IOPS by 34%, on average,
over LSM-tree. Using the HW accelerators for sorting further
improved the performance. As depicted in Figure 8, PinK+HW
achieved 7.2% higher IOPS than PinK on average.

Those benefits of PinK were evident for the workloads with
many writes. For Load, YCSB-A, and YCSB-F, we observed
that PinK+HW improved IOPS by 56∼152% and 10∼21% over
LSM-tree and PinK, respectively. Even with the workloads
having relatively small writes (i.e., YCSB-B, D), PinK+HW
exhibited 14∼24% and 3% higher IOPS than LSM-tree and
PinK, respectively. For the read-only workload, YCSB-C, no
performance benefits were observed with PinK and PinK+HW.

One of the observations we did not expect was that PinK
significantly outperformed LSM-tree for YCSB-D which is-
sues only a small number of writes. This was due to the
somewhat unique I/O behavior of YCSB-D that read recently-
written KV pairs frequently. In PinK, recently-written KV
pairs were stored in top levels pinned to DRAM. Thus, the
majority of GET() requests were directly served by pinned
levels, avoiding flash I/Os.
LSM-tree performed worse than Hash for the write-

intensive benchmarks (Load, YCSB-A and F) owing to CPU
overheads, but exhibited higher IOPS for the read-oriented
workloads (YCSB-B, C and D). For YCSB-E with range
queries, the LSM-tree-based KV-SSDs showed much higher
IOPS than Hash, thanks to their sorted indexing structure.

Impact of Level Pinning: Figure 10 shows the impact of
the level pinning on read and write I/O counts. As shown
in Figure 10(a), PinK reduced the number of flash reads per
query by 33% and 62% over LSM-tree and Hash, respectively.
Since PinK pinned exact KV indices in DRAM, it eliminated
many flash reads.
Hash was badly affected from hash misses and collisions.

Hash maintained only signatures in DRAM. Thus, even when

9

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

A

C
D

F

Time (ms)

PinK PinK+HW

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

B
Time (ms)

Hash LSM-tree

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

C
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5 5

D
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 20

E
Time (ms)

 0.95

 0.96

 0.97

 0.98

 0.99

 1

0 2.5

F
Time (ms)

Figure 9: CDF graphs of read latency of Hash, LSM-tree, PinK, and PinK+HW under YCSB

it has hits on SET() requests, it had to retrieve exact keys
from flash unless designated buckets were empty. LSM-tree
exhibited two flash page reads per query: one for a KV in-
dex and the other for a value (1 KB). This is because Monkey
bloom filters [10] used in LSM-tree requires one read to fetch
indices, on average. For YCSB-D and E, the number of reads
per query was less than 2. Since YCSB-D tends to read re-
cently written KV pairs, many of GET()s were directly served
by L0 or pinned levels. YCSB-E contained range queries, so
LSM-tree could fetch several desired KV indices by one read.

Figure 10(b) shows the percentage of compaction I/O out of
the total I/O for LSM-tree operations (both reads and writes).
By absorbing many index updates in pinned levels, it reduced
the number of compaction I/Os by 52% over LSM-tree. Ex-
cept for Load and YCSB-A with many writes, compaction
I/Os only accounted for less than 20% of the total I/Os. How-
ever, as shown in Figure 8, the negative impact of compaction
I/O ratio on the throughput was significant.

YCSB Read Latency: Figure 9 shows CDF graphs of read
response times of the four KV-SSD setups. Table 2 also lists
average, 99th, 99.9th, and 99.99th percentile read latency of
Hash, LSM-tree, and PinK. As expected, PinK and PinK+HW
showed better average latency with shorter tails compared
to the others. Thanks to bloom filters, LSM-tree performed
fairly well compared to hash-based one, but had long tails as
expected. Hash suffered from long tails due to multiple flash
I/Os caused by hash misses and collisions. YCSB-E showed
longer latency than the others because it issued range queries
that carry multiple GET() commands.

Impact of Search Path Optimization: To understand the

 1

 1.5

 2

 2.5

 3

A B C D E F

#
 o

f
fl
a
s
h
 p

a
g
e
 r

e
a
d
s Hash

LSM-tree
PinK

(a) Flash page reads per query

 0

 10

 20

 30

 40

 50

 60

 70

 80

Load A B C D E F
0

P
e
rc

e
n
ta

g
e
 (

%
)

LSM-tree
PinK

(b) Compaction I/Os

Figure 10: The impact of the level pinning on flash read I/Os
(a) and compaction I/Os (b)

impact of the search path optimization, we carried out ex-
periments with optimization techniques enabled one by one.
NO-OPT represents PinK with no optimization, Range is PinK
with range pointers, and ALL is with both range pointers and
prefix. We used Load and YCSB-C workloads.

Figure 11 (a) shows the throughputs under Load and YCSB-
C. For Load, there were slight performance drops as the op-
timization technique was added. This was due to overheads
required for managing additional data structures. These were
not significant. For YCSB-C with 100% reads, high through-
put improvements were observed. In particular, ALL exhibited
almost the same read throughput as LSM-tree. This means
that the search overheads were almost eliminated. Figure 11
(b) presents the CDF of read latency under YCSB-C. We ob-
served similar performance trends. ALL showed almost the
same read latency as LSM-tree but with shorter tails.

Garbage Collection: With all the workloads of YCSB, GC
did not involve many valid page copies. This was because
almost all of the victim blocks were meta-segment blocks that
held invalid KV indices. To simulate a situation where GC
severely triggered, we designed another set of experiments.
We first created a KV pool with 44M unique KV pairs, and
then ran a synthetic workload that issued 100M SET()s with
uniformly random keys to overwrite existing KV pairs. WAF
reached 3.27 and became stable with little fluctuation after
90M SET()s were issued. This indirectly confirms that we
issued sufficient I/Os to induce heavy GC I/O traffic.

Figure 12 analyzes the number of page writes issued during
GC. Hash involved a smaller number of page writes for GC
than PinK. After moving valid flash pages, both Hash and

Table 2: Comparison of average and tail latency (unit: µs)

Percentile A B C D E F

Hash

Average 410 573 592 501 5,628 370
99th 2,180 2,550 2,900 3,030 17,550 1,850

99.9th 4,180 4,600 5,710 5,090 25,360 3,260
99.99th 9,430 9,340 9,830 7,530 34,420 5,180

LSM-tree

Average 302 395 722 294 3,142 329
99th 640 960 1,870 890 5,790 680

99.9th 1,700 1,630 2,680 1,370 8,800 1,890
99.99th 5,250 3,140 3,450 3,210 10,740 3,750

PinK

Average 236 290 732 161 3,027 248
99th 490 700 1,820 490 5,550 540

99.9th 670 1,040 2,180 720 6,640 800
99.99th 1,300 1,800 2,370 1,060 7,590 1,540

10

 0

 20

 40

 60

Load YCSB-C

K
IO

P
S

LSM-tree

NO-OPT

+RANGE

+ALL

(a) Throughput

 0.95

 0.96

 0.97

 0.98

 0.99

 1

1 2 3

C
D

F

Time (ms)

LSM-tree
NO-OPT
+RANGE
+ALL

(b) Read Latency

Figure 11: Impact of search path optimizations

PinK have to update in-flash hash buckets or meta segments
so that they point to the new locations of the moved pages
(denoted by ‘KV Indices’ in Figure 12). Since a bucket size
of Hash (8B signatures) is smaller than that of PinK (32B
keys), more buckets are packed into a single flash page for
Hash. Thus, the number of flash page I/O for updating KV
indices becomes smaller than that of PinK. Even worse, PinK
suffered from extra compaction I/Os.
PinK+GCOPT addresses this problem by rewriting victim

KV pairs to L0, instead of directly updating meta segments
(see §4.5). This removed all flash writes associated with ‘KV
Indices’, but potentially increased compaction costs since the
indices for the victim pages in L0 will be eventually written
to meta segments again. This extra compaction cost was not
so high. We observed that victim KV pairs in L0 were likely
to be coalesced with neighboring KV pairs and their indices
were written to the same meta segment together.

Our results tell us that the compaction I/O cost of the LSM-
tree, which is considered a major reason that makes people
choose the hashing rather than the LSM-tree, is actually not a
serious problem in achieving high I/O performance.

Read Latency and LSM-tree Height (h): Until now we
have assumed that h and k are fixed to 5 and 3, respectively,
and except for the last level, the rest is pinned to DRAM.
As explained earlier (§4.2), this is a reasonable setup given
that it required DRAM as small as 0.1% of flash storage
and modern SSDs have more DRAM than that. However, to
improve write performance further [26], one might want to
increase the height of the tree. Unfortunately, as the tree gets

 0

 1x10
7

 2x10
7

 3x10
7

 4x10
7

 5x10
7

Hash

PinK

PinK+GCOPT

#
 o

f
P

a
g
e
 W

ri
te

s
 (

8
 K

B
)

Data

GC

Compaction

KV Indices

Figure 12: Analysis of GC cost: ‘Data’ represents pages writ-
ten by SET(). ‘GC’ indicates pages written to move valid
values for GC. ‘Compaction’ represents pages written to meta
segments during compaction. ‘KV Indices’ indicates pages
written to update meta segments or in-flash hash indices.

 0

 2

 4

 6

 8

4 5 6 7 8

(a) Bloom filter

99.99
th

avg.

#
 o

f
fl
a

s
h

 p
a

g
e

 r
e

a
d

s

of Levels (h)

4 5 6 7 8

(b) PinK

of Levels (h)

3

3.5

4

6 7 8

Figure 13: The number of flash page reads with varying h

taller, PinK cannot pin all the higher levels to DRAM. Given
64MB DRAM, for example, for h = 6, 7, and 8, the amount
of DRAM required to pin all the levels but the last one are
176, 292, and 437MB, respectively. For h = 6 and 7, PinK
cannot pin two lowest levels, and, for h = 8, the last three
levels cannot be pinned. Even in such cases, the worst-case
read latency can be guaranteed, but it increases to 3 reads (for
h = 6 and 7) and 4 reads (for h = 8).

To understand its impact, using YCSB-C (100% reads), we
measured the number of flash reads per query with various
tree heights (h). Figure 13 shows the average read counts
and 99.99th percentile read counts of LSM-tree and PinK.
The average read count of LSM-tree was close to 2. Again,
regardless of h, Monkey required one flash read for fetching
KV indices, on average. However, owing to its probabilistic
nature, the tail latency increased greatly, and the gap between
the tail and the average got wider as h increased.

Unlike LSM-tree, PinK exhibited stable read counts.
While the average read count increased along with h, the
worst-case read count was guaranteed as O(h− k− 1). For
YCSB-C, there were no huge differences between the average
and the tail read counts. This is because YCSB-C had low tem-
poral locality and thus the majority of GET() were served by
the flash-resident last level This experimental results confirm
that PinK can provide more stable read latency even when h
is set high and all the levels cannot be pinned to DRAM.

6 Conclusion

We have presented a novel LSM-tree-based KV-SSD design,
called PinK. By pinning KV indices of top levels of the LSM-
tree to DRAM, PinK is able to guarantee the worst-case read
latency, while improving average read latency. Moreover, by
combining the level pinning with hardware accelerators, PinK
not only eliminated sorting overheads, but reduced I/O opera-
tions related to compaction greatly. Our experimental results
show that PinK outperformed existing hash-based KV-SSDs
in tail read-latency, average read-latency, and I/O throughput.
In future, we plan to explore the idea of the level pinning
in general-purpose KVS like RocksDB. We think the main
challenge in realizing this idea is providing a small amount of
battery-backed DRAM which can be referenced by the host
CPU along with the normal system DRAM.

11

References

[1] AGRAWAL, N., PRABHAKARAN, V., WOBBER, T.,
DAVIS, J. D., MANASSE, M. S., AND PANIGRAHY,
R. Design Tradeoffs for SSD Performance. In Pro-
ceedings of the USENIX Annual Technical Conference
(2008).

[2] ASHKIANI, S., LI, S., FARACH-COLTON, M.,
AMENTA, N., AND OWENS, J. D. GPU LSM: A
Dynamic Dictionary Data Structure for the GPU.
In Proceedings of IEEE International Parallel and
Distributed Processing Symposium (2018), pp. 430–440.

[3] ATIKOGLU, B., XU, Y., FRACHTENBERG, E., JIANG,
S., AND PALECZNY, M. Workload Analysis of a Large-
scale Key-value Store. In Proceedings of the ACM SIG-
METRICS/PERFORMANCE Joint International Con-
ference on Measurement and Modeling of Computer
Systems (2012), pp. 53–64.

[4] AXBOE, J. FIO: Flexible I/O Tester Synthetic Bench-
mark. URL https://github.com/axboe/fio (Accessed:
2015-06-13) (2005).

[5] BAE, D.-H., JO, I., CHOI, Y. A., HWANG, J.-Y., CHO,
S., LEE, D.-G., AND JEONG, J. 2B-SSD: The Case for
Dual, Byte- and Block-addressable Solid-state Drives.
In Proceedings of the Annual International Symposium
on Computer Architecture (2018), pp. 425–438.

[6] CHANDRAMOULI, B., PRASAAD, G., KOSSMANN, D.,
LEVANDOSKI, J., HUNTER, J., AND BARNETT, M.
Faster: A Concurrent Key-value Store with In-place
Updates. In Proceedings of the ACM International Con-
ference on Management of Data (2018), ACM, pp. 275–
290.

[7] CHUNG, C., KOO, J., IM, J., ARVIND, AND LEE, S.
LightStore: Software-defined Network-attached Key-
value Drives. In Proceedings of the International Con-
ference on Architectural Support for Programming Lan-
guages and Operating Systems (2019), pp. 939–953.

[8] COLGROVE, J., DAVIS, J. D., HAYES, J., MILLER,
E. L., SANDVIG, C., SEARS, R., TAMCHES, A., VACH-
HARAJANI, N., AND WANG, F. Purity: Building Fast,
Highly-Available Enterprise Flash Storage from Com-
modity Components. In Proceedings of the ACM Inter-
national Conference on Management of Data (2015),
p. 1683–1694.

[9] COOPER, B. F., SILBERSTEIN, A., TAM, E., RAMAKR-
ISHNAN, R., AND SEARS, R. Benchmarking Cloud
Serving Systems with YCSB. In Proceedings of the
ACM symposium on Cloud computing (2010), pp. 143–
154.

[10] DAYAN, N., ATHANASSOULIS, M., AND IDREOS, S.
Monkey: Optimal Navigable Key-value Store. In Pro-
ceedings of the ACM International Conference on Man-
agement of Data (2017), pp. 79–94.

[11] DAYAN, N., AND IDREOS, S. Dostoevsky: Better Space-
time Trade-offs for LSM-tree based Key-value Stores
via Adaptive Removal of Superfluous Merging. In Pro-
ceedings of the ACM International Conference on Man-
agement of Data (2018), pp. 505–520.

[12] DEBNATH, B., SENGUPTA, S., AND LI, J. FlashStore:
High Throughput Persistent Key-value Store. Proceed-
ings of the VLDB Endowment 3, 1-2 (2010), 1414–1425.

[13] ELDAKIKY, H., AND DU, D. H. C. Key-Value Pairs
Allocation Strategy for Kinetic Drives. In Proceedings
of the IEEE International Conference on Big Data Com-
puting Service and Applications (2018), pp. 17–24.

[14] FACEBOOK, INC. RocksDB: A Persistent Key-value
Store for Fast Storage Environments. https://
rocksdb.org.

[15] GUPTA, A., KIM, Y., AND URGAONKAR, B. DFTL:
A Flash Translation Layer Employing Demand-based
Selective Caching of Page-level Address Mappings. In
Proceedings of the International Conference on Archi-
tectural Support for Programming Languages and Op-
erating Systems (2009), pp. 229–240.

[16] HERLIHY, M., SHAVIT, N., AND TZAFRIR, M. Hop-
scotch Hashing. In International Symposium on Dis-
tributed Computing (2008), Springer, pp. 350–364.

[17] JIN, Y., TSENG, H.-W., PAPAKONSTANTINOU, Y.,
AND SWANSON, S. KAML: A Flexible, High-
performance Key-value SSD. In Proceedings of the
IEEE International Symposium on High Performance
Computer Architecture (2017), pp. 373–384.

[18] JUN, S.-W., LIU, M., LEE, S., HICKS, J., ANKCORN,
J., KING, M., XU, S., AND ARVIND. BlueDBM: An
Appliance for Big Data Analytics. In Proceedings of
the Annual International Symposium on Computer Ar-
chitecture (2015), pp. 1–13.

[19] KAI REN, G. G. TABLEFS: Enhancing Metadata Effi-
ciency in the Local File System. In Proceedings of the
USENIX Annual Technical Conference (2013).

[20] KANG, Y., PITCHUMANI, R., MISHRA, P., KEE, Y.-S.,
LONDONO, F., OH, S., LEE, J., AND LEE, D. D. G.
Towards Building a High-performance, Scale-in Key-
value Storage System. In Proceedings of the ACM In-
ternational Conference on Systems and Storage (2019),
pp. 144–154.

12

https://rocksdb.org
https://rocksdb.org

[21] KIM, S.-H., KIM, J., JEONG, K., AND KIM, J.-S.
Transaction Support using Compound Commands in
Key-Value SSDs. In Proceedings of the USENIX Work-
shop on Hot Topics in Storage and File Systems (July
2019).

[22] KOURTIS, K., IOANNOU, N., AND KOLTSIDAS, I.
Reaping the performance of fast NVM storage with
uDepot. In Proceedings of the USENIX Conference on
File and Storage Technologies (2019), pp. 1–15.

[23] LAKSHMAN, A., AND MALIK, P. Cassandra: A De-
centralized Structured Storage System. ACM SIGOPS
Operating Systems Review 44, 2 (2010), 35–40.

[24] LEE, C.-G., KANG, H., PARK, D., PARK, S., KIM, Y.,
NOH, J., CHUNG, W., AND PARK, K. iLSM-SSD: An
Intelligent LSM-tree Based Key-Value SSD for Data An-
alytics. In Proceedings of the IEEE International Sym-
posium on Modeling, Analysis, and Simulation of Com-
puter and Telecommunication Systems (2019), pp. 384–
395.

[25] LU, L., PILLAI, T. S., ARPACI-DUSSEAU, A. C., AND
ARPACI-DUSSEAU, R. H. WiscKey: Separating Keys
from Values in SSD-conscious Storage. In Proceed-
ings of the USENIX Conference on File and Storage
Technologies (2016), pp. 133–148.

[26] LUO, C., AND CAREY, M. J. LSM-based Storage Tech-
niques: a Survey. The VLDB Journal (2019).

[27] MÁRMOL, L., SUNDARARAMAN, S., TALAGALA, N.,
RANGASWAMI, R., DEVENDRAPPA, S., RAMSUNDAR,
B., AND GANESAN, S. NVMKV: A Scalable and
Lightweight Flash Aware Key-value Store. In Proceed-
ings of the USENIX Conference on Hot Topics in Storage
and File Systems (2014), pp. 8–8.

[28] NGD SYSTEMS, INC. NGD Catalina NVMe SSD.
https://www.ngdsystems.com/products/, 2018.

[29] O’NEIL, P., CHENG, E., GAWLICK, D., AND O’NEIL,
E. The Log-structured Merge-tree (LSM-tree). Acta
Informatica 33, 4 (1996), 351–385.

[30] PAGH, R., AND RODLER, F. F. Cuckoo Hashing. Jour-
nal of Algorithms 51, 2 (2004), 122–144.

[31] ROSENBLUM, M., AND OUSTERHOUT, J. K. The De-
sign and Implementation of a Log-structured File Sys-
tem. ACM Transactions on Computer Systems (TOCS)
10, 1 (1992), 26–52.

[32] SAMSUNG ELECTORNICS. Samsung Smart SSD.
https://samsungatfirst.com/smartssd-ocp/,
2018.

[33] SAMSUNG ELECTRONICS. KV SSD Host Software
Package. https://github.com/OpenMPDK/KVSSD.

[34] SAMSUNG ELECTRONICS. Samsung
Introduces World’s Largest Capacity
(15.36TB) SSD for Enterprise Storage Sys-
tems. https://news.samsung.com/global/
samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems,
2016.

[35] SAMSUNG ELECTRONICS. Samsung Key
Value SSD enables High Performance Scaling.
https://www.samsung.com/semiconductor/
global.semi.static/Samsung_Key_Value_SSD_
enables_High_Performance_Scaling-0.pdf,
2017.

[36] SAMSUNG ELECTRONICS. 860EVO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
global.semi.static/Samsung_SSD_860_EVO_
Data_Sheet_Rev1.pdf, 2018.

[37] SAMSUNG ELECTRONICS. KV SSD Firmware Intro-
duction. https://github.com/OpenMPDK/KVSSD/
wiki/presentation/kvssd_seminar_2018/kvssd_
seminar_2018_fw_introduction.pdf, 2018.

[38] SAMSUNG ELECTRONICS. 960PRO SSD Specifica-
tion. https://www.samsung.com/semiconductor/
minisite/ssd/product/consumer/ssd960/, 2019.

[39] SNIA. Key Value Storage API Specification Version
1.0. https://www.snia.org/tech_activities/
standards/curr_standards/kvsapi.

[40] TWITTER INC. Fatcache: Memcache on SSD. https:
//github.com/twitter/fatcache.

[41] WANG, J., ZHANG, Y., GAO, Y., AND XING, C. pLSM:
A Highly Efficient LSM-Tree Index Supporting Real-
Time Big Data Analysis. In Proceedings of IEEE Annual
Computer Software and Applications Conference (2013),
pp. 240–245.

[42] XILINX. Xilinx Zynq UltraScale+ MPSoC ZCU102
Evaluation Kit. https://www.xilinx.com/
products/boards-and-kits/ek-u1-zcu102-g.
html, 2018.

[43] XU, S., LEE, S., JUN, S.-W., LIU, M., HICKS, J.,
ET AL. Bluecache: A Scalable Distributed Flash-based
Key-value Store. Proceedings of the VLDB Endowment
10, 4 (2016), 301–312.

13

https://www.ngdsystems.com/products/
https://samsungatfirst.com/smartssd-ocp/
https://github.com/OpenMPDK/KVSSD
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems
https://news.samsung.com/global/samsung-now-introducing-worlds-largest-capacity-15-36tb-ssd-for-enterprise-storage-systems
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_Key_Value_SSD_enables_High_Performance_Scaling-0.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://www.samsung.com/semiconductor/global.semi.static/Samsung_SSD_860_EVO_Data_Sheet_Rev1.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://github.com/OpenMPDK/KVSSD/wiki/presentation/kvssd_seminar_2018/kvssd_seminar_2018_fw_introduction.pdf
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.samsung.com/semiconductor/minisite/ssd/product/consumer/ssd960/
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://www.snia.org/tech_activities/standards/curr_standards/kvsapi
https://github.com/twitter/fatcache
https://github.com/twitter/fatcache
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

	Introduction
	Background
	NAND Flash-based SSD
	KV-SSD
	Hash-based KV-SSD
	LSM-Tree versus Hashing

	Challenges in implementing LSM-tree in a KV-SSD
	Basic of LSM-Tree Algorithm
	Performance Analysis

	Design of PinK
	Overall Architecture
	Improving I/O Speed with Level Pinning
	Optimizing Search Path
	Speeding up Compaction
	Optimizing Garbage Collection

	Experiments
	Experimental Setup
	Performance Analysis

	Conclusion

